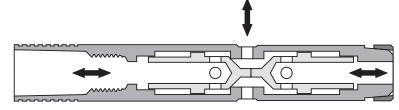
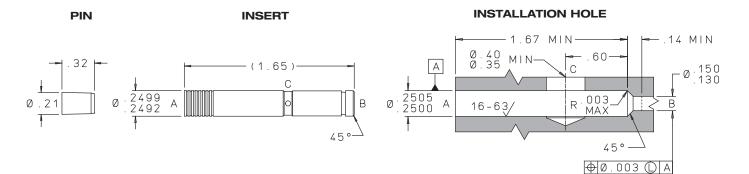
Innovation in Miniature


250 INVERSE LEE SHUTTLE[™] VALVE

The Lee Company's new 250 Inverse Shuttle Valve is the latest addition to Lee's line of miniature inverse shuttle valves. The poppets in this shuttle valve are designed to allow the lower inlet pressure to flow while the higher inlet pressure is blocked.


This new shuttle valve is ideal for high pressure applications with system pressures up to 5000 PSI. The metal components are constructed entirely of stainless steel for durability and long life. Each Inverse Shuttle Valve is 100% tested and inspected to ensure reliable, consistent performance.

- Designed for system pressures up to 5000 psi
- Weighs only 8 grams
- All metal components made from stainless steel
- 100% tested and inspected
- Endurance tested to 250,000 cycles

SVIA2500326D

MATERIALS					
PART	MATERIAL	SPECIFICATION			
Body Rear	304 Cres	AMS 5639			
Body Center	15-5PH Cres	AMS 5659			
Body Front	304 Cres	AMS 5639			
Poppets	15-5PH Cres	AMS 5659			
Pin	17-4 PH	AMS 5643			
Compression Seal	Polyimide	_			

PERFORMANCE

Unbalanced Flow: (290 Lohms maximum) Port A to Port C (Port B Closed): 0.31 GPM min. @ 25 psid ($P_B \ge 1.25 \times P_A$) Port B to Port C (Port A Closed): 0.31 GPM min. @ 25 psid ($P_A \ge 1.25 \times P_B$)				
Anti-Cavitation Flow: (260 Lohms maximum) Port C to Port A: 0.35 GPM min. @ 25 psid Port C to Port B: 0.35 GPM min. @ 25 psid				
Maximum Leakage: Port A to Ports C & B (Ports C & B at atmosphere): 5 drops/minute at 50 psid Port B to Ports C & A (Ports C & A at atmosphere): 5 drops/minute at 50 psid Nominal System Pressure: up to 5000 psi Nominal Weight: 8 grams				

Valve performance on MIL-PRF-83282 at 85 °F 1 drop

1 drop = 50 uL

The Lee Company • 2 Pettipaug Road, PO Box 424, Westbrook, Connecticut 06498-0424 Tel: 860-399-6281 • Fax: 860-399-7037 • inquiry@theleeco.com • www.theleeco.com

LEE LOHM LAWS

LOHMS LAWS (liquids)

Every engineer will be interested in our simple system of defining the fluid resistance of Lee hydraulic components.

Just as the OHM is used in the electrical industry, we find that we can use a liquid OHM or "Lohm" to good advantage on all hydraulic computations.

When using the Lohm system, you can forget about coefficients of discharge and dimensional tolerances on drilled holes. These factors are automatically compensated for in the Lohm calculations, and confirmed by testing each component to establish flow tolerances. The resistance to flow of any fluid control component can be expressed in Lohms.

The Lohm has been selected so that a 1 Lohm restriction will permit a flow of 100 gallons per minute of water with a pressure drop of 25 psi at a temperature of 80°F.

LIQUID FLOW - UNITS CONSTANT K

VOLUMETRIC FLOW UNITS				
Flow Units	Pressure Units			
	psi	bar	kPa	
GPM	20	76.2	7.62	
L/min	75.7	288	28.8	
ml/min	75700	288000	28800	
in ³ /min	4620	17600	1 760	

GRAVIMETRIC FLOW UNITS				
Flow Units	Pressure Units			
	psi	bar	kPa	
PPH	10 000	38 100	3810	
gm/min	75700	288000	28800	

LIQUID FLOW FORMULA

The following formulas are presented to extend the use of the Lohm laws to many different liquids, operating over a wide range of pressure conditions.

These formulas introduce compensation factors for liquid density and viscosity. They are applicable to any liquid of known properties, with minimum restrictions on pressure levels or temperature.

The units constant (K) eliminates the need to convert pressure and flow parameters to special units.

Volumetric L = $\frac{KV}{I} \sqrt{\frac{H}{S}}$	Gravimetric L = $\frac{KV}{W} \sqrt{HS}$ Flow Units
--	--

NOMENCLATURE

- L = Lohms
- S = Specific gravity*
- H = Differential pressure
- V = Viscosity compensation factor**
- I = Liquid flow rate: Volumetric
- w = Liquid flow rate: Gravimetric
- K = Units Constant Liquid (see chart above)
- *S = 1.0 for water at 80°F.
- **V = 1.0 for water at 80° F.

For other fluids and temperatures, contact your Lee Sales Engineer or visit us at www.theleeco.com.