Innovation in Miniature

PRODUCT DATA SHEET

NACE COMPLIANT HIGH PRESSURE LEE CHEK®

The Lee Company's new NACE Compliant High Pressure Lee Chek[®] Valves are specifically designed for the harsh duty applications found in the oil tool industry. They are constructed entirely of corrosion-resistant materials that comply with NACE specification MR0175/ISO 15156. These new check valves feature a durable MP35N poppet and seat, and are designed for checked direction pressures up to 15,000 psid.

The new valves are available in free flow forward and free flow reverse directions, with cracking pressures of 5 ± 3 and 1 ± 0.5 psid. Sizes range from 0.125" to 0.500" in diameter, with free flow Lohm[†] rates from 400 to 15 Lohms. Each NACE Compliant High Pressure Lee Chek[®] valve is 100% tested and inspected to ensure reliable, consistent performance, eliminating the need for additional in-house testing.

FREE FLOW FORWARD

FREE FLOW REVERSE

MATERIALS			
PART MATERIAL			
Body	MP35N		
Poppet	MP35N		
Spring	Elgiloy		
Pin	MP35N		

Pins are prewaxed. Do not degrease. Do not lubricate.

[†] The Lohm is a measure of flow resistance. Additional information can be found on the reverse side and at www.TheLeeCo.com.

- All Valve Materials Compliant with NACE MR0175/ISO 15156
- 15,000 psid Maximum Working Pressure
- 5 Standard Sizes, as Small as 0.125" Diameter
- Free Flow Lohm Rates from 400 Down to 15 Lohms
- 100% Tested and Inspected

INSTALLATION HOLE

	.125" Dia.	.187" Dia.	.250" Dia.	.375" Dia.	.500" Dia.
ØD	0.1242 - 0.1249	0.1867 - 0.1874	0.2492 - 0.2499	0.3742 - 0.3749	0.4992 -0.4999
M	0.52	0.82	1.00	1.30	1.69
øк	0.11	0.16	0.21	0.34	0.46
L	0.14	0.25	0.32	0.39	0.49
A	0.54 min.	0.84 min.	1.02 min.	1.32 min.	1.71 min.
ØN	0.082 - 0.096	0.141 - 0.159	0.205 - 0.221	0.280 - 0.320	0.378 - 0.445
Ø Ream	0.1250 - 0.1255	0.1875 - 0.1880	0.2500 - 0.2505	0.3750 - 0.3755	0.5000 - 0.5010

LEE PART NUMBER	CRACKING PRESSURE (psid)	LOHM RATE (Max.)	FLOW DIRECTION	MAXIMUM LEAKAGE CHECKED DIRECTION	MAX. WORKING PRESSURE* (psid)
CHRA1256651A	1 ± 0.5		Bovorso	1 drop/min at 5 psid	15 000
CHRA1256655A	5 ± 3	400	nevelse	i diop/min di o pola	15,000
CHFA1256651A	1 ± 0.5	400	Forward	1 drop/hr at	15.000*
CHFA1256655A	5 ± 3		roiwaiu	1,000-15,000 psid	15,000*
CHRA1876651A	1 ± 0.5		Boyoroo	1 dron/min at 5 nsid	15,000
CHRA1876655A	5 ± 3	010	Reverse		
CHFA1876651A	1 ± 0.5	210	Forward	1 drop/hr at	15.000*
CHFA1876655A	5 ± 3		Forward	1,000-15,000 psid	15,000
CHRA2506651A	1 ± 0.5		Reverse	1 drop/min at 5 psid 1 drop/hr at 1,000-15,000 psid	15 000
CHRA2506655A	5 ± 3	60			15,000
CHFA2506651A	1 ± 0.5	60	Forward		15.000*
CHFA2506655A	5 ± 3				15,000
CHRA3756651A	1 ± 0.5		Reverse	1 drop/min at 5 psid	15,000
CHRA3756655A	5 ± 3	07			
CHFA3756651A	1 ± 0.5	21	Forward	1 drop/hr at	15.000*
CHFA3756655A	5 ± 3		Forward	1,000-15,000 psid	15,000
CHRA5006651A	1 ± 0.5		Boyoroo	1 drop/min at 5 psid	15 000
CHRA5006655A	5 ± 3	15	neverse		15,000
CHFA5006651A	1 ± 0.5	1D	Forward	1 drop/hr at	15.000*
CHFA5006655A	5 ± 3		rorward	1,000-15,000 psid	15,000

* These forward flow check valve models require secondary retention for check direction pressure above 8,000 PSID.

THE LEE COMPANY, 2 PETTIPAUG RD., P.O. BOX 424, WESTBROOK, CT 06498-0424

Tel: 860-399-6281 Fax, Order Entry: 860-399-7058 Fax, Technical Information: 860-399-7037 Web: www.TheLeeCo.com

PDS 108 6/11

LEE LOHM LAWS

LOHMS LAWS (liquids)

Every engineer will be interested in our simple system of defining the fluid resistance of Lee hydraulic components.

Just as the OHM is used in the electrical industry, we find that we can use a liquid OHM or "Lohm" to good advantage on all hydraulic computations.

When using the Lohm system, you can forget about coefficients of discharge and dimensional tolerances on drilled holes. These factors are automatically compensated for in the Lohm calculations, and confirmed by testing each component to establish flow tolerances. The resistance to flow of any fluid control component can be expressed in Lohms.

The Lohm has been selected so that a 1 Lohm restriction will permit a flow of 100 gallons per minute of water with a pressure drop of 25 psi at a temperature of 80°F.

LIQUID FLOW FORMULA

The following formulas are presented to extend the use of the Lohm laws to many different liquids, operating over a wide range of pressure conditions.

These formulas introduce compensation factors for liquid density and viscosity. They are applicable to any liquid of known properties, with minimum restrictions on pressure levels or temperature.

The units constant (K) eliminates the need to convert pressure and flow parameters to special units.

Volumetric L = $\frac{KV}{I} \sqrt{\frac{H}{S}}$	Gravimetric Flow Units	$= \frac{KV}{W}$	нs
--	---------------------------	------------------	----

FREE LOHM SYSTEM SLIDE RULE

The Lee Company offers a specially designed Hydraulic and Pneumatic Flow Calculator to help in the transition to the Lohm System. This handy, free slide rule can be used to solve basic Lohm calculations.

LIQUID FLOW - UNITS CONSTANT K

VOLUMETRIC FLOW UNITS				
	Pressure Units			
Flow Units	psi	bar	kPa	
GPM	20	76.2	7.62	
L/min	75.7	288	28.8	
ml/min	75700	288000	28800	
in³/min	4620	17600	1 760	

GRAVIMETRIC FLOW UNITS				
	Pressure Units			
Flow Units	psi	bar	kPa	
PPH	10 000	38 100	3810	
gm/min	75700	288000	28800	

NOMENCLATURE

- L = Lohms
- S = Specific gravity*
- H = Differential pressure
- V = Viscosity compensation factor**
- I = Liquid flow rate: Volumetric
- w = Liquid flow rate: Gravimetric
- K = Units Constant Liquid (see chart above)
- *S = 1.0 for water at 80°F.
- **V = 1.0 for water at 80° F.

For other fluids and temperatures, contact your Lee Sales Engineer or visit us at www.TheLeeCo.com.

THE LEE COMPANY, 2 PETTIPAUG RD., P.O. BOX 424, WESTBROOK, CT 06498-0424

Tel: 860-399-6281 Fax, Order Entry: 860-399-7058 Fax, Technical Information: 860-399-7037 Web: www.TheLeeCo.com