INFRARED GAS ANALYZER Type: ZRE A maximum of 5 gas components (of NOx, SO₂, CO, CO₂, CH₄, and O₂) can be measured simultaneously and continuously. Simultaneous and continuous measurement of the concentration of up to 5 gas components Excellent prolonged stability Compact size and simple operation Virtually unaffected by the interference of moisture. Substantial functions, including automatic calibration, communications, and alarms (Option) Measurement of **5** components with just one unit # Compact body packed with abundant functions Fuji infrared gas analyzer # **Easy-view large LCD** Instruction in Engrish facilitates operation. # Neat rear face to facilitate connection ### Short depth Light weight (approximately 8 kg) # Adoption of our unique infrared ray single-beam system ### Measures the concentration of up to 5 gas components simultaneously and continuously. The concentration of five gas components (of SO₂, NOx, CO, CO₂, CH₄, and O₂) can be measured. For example, the components in flue exhaust gas (SO2, NOx, CO, CO₂, and O₂) can be measured simultaneously and continuously. | | NO | SO ₂ | CO | CO ₂ | CH ₄ | O ₂ | |---------------------------|----|-----------------|----|-----------------|-----------------|-----------------------------| | Single-component analyzer | 0 | 0 | 0 | 0 | 0 | Can be added by designation | | Double-component analyzer | 00 | 0 | 00 | 00 | 00 | Can be added by designation | | Three-component analyzer | 0 | 0 | 0 | 0 | 0 | Can be added by designation | | Four-component analyzer | 0 | 0 | 0 | 0 | | Can be added by designation | #### Excellent prolonged stability, easy maintenance, and high-precision measurement with repeatability of 0.5% # Virtually unaffected by the interference of moisture sensitivity When wind blows from Analysis is almost unaffected by any moisture present in the sample gas. Our unique interference correcting function has significantly reduced the effect of moisture. | Interference component | CO₂sensor | COsensor | CH₄sensor | SO₂sensor | NOsensor | |---------------------------|-------------|------------------|-------------|-------------------|----------------| | H₂O saturation
at 20°C | 1% or lower | 1% or lower | 1% or lower | - | - | | H₂O saturation at 2°C | - | 2.5% or
lower | _ | 2% or lower | 2% or
lower | | CO 1000ppm | 1% or lower | - | 1% or lower | 1% or lower | 1% or lower | | CO ₂ 15% | - | 1% or lower | 1% or lower | 1% or lower | 2% or
lower | | CH₄ 1000ppm | 1% or lower | 1% or lower | - | 50ppm or
lower | - | #### Communication with a PC achieved with RS485 (Modbus) communication function (Option) With the USB connector (gage on the front face), RS485 connector for communication on the rear face Details of communication: Read/write of various settings, output of measured concentration value and instrument status #### Zero/span auto calibration function (option) eliminates irksome calibration work. # Abundant digital I/O signals (Option) When wind blows from # External digital input signal Range switching, auto calibration start, output signal hold, average value reset #### Digital output signal (1c relay contact) Identification of each component range, instrument failure, calibration error, auto calibration in progress, upper/lower limit alarm for each component, pump ON/OFF, solenoid valve drive for auto calibration # Simple gas sampling system backed by a substantial track record # Example of measurement of exhaust gas from a boiler or refuse incinerator (NO, SO₂, CO, CO₂, and O₂ measurement) # Example of measurement of CO, CH₄, and CO₂ from an industrial furnace # Easy installation to equipment ### NO₂ → NO gas converter (Type: ZDLO4) - Target gas: Exhaust gas from general boilers, atmosphere - Catalyst usage: 2 cm - Catalyst replacement interval: Approximately 1 year - Flow rate of the gas to be analyzed: 0.5 - · Conversion efficiency: 90% or higher (conforming to JIS) - Temperature control: Built in - Power supply voltage: 100 to 240 VAC, 50/60 Hz - External dimensions: 212(H)x148(W)x130(D) mm #### Zirconia oxygen sensor (Type: ZFK7) - Measurement range: 0 to 25% - Repeatability: Within ±0.5% of full scale - Zero drift: Within ±1% of full scale/week - Span drift: Within ±2% of full scale/week - Response time: Approximately 20 sec (90% response) - Temperature control: Built in - · Oxygen concentration display: Displayed on the gas analyzer connected - Flow rate of the gas measured: 0.5±0.25 - Power supply voltage: 100 to 115 VAC, 50/60 Hz - External dimensions: 140(H)x170(W)x190(D) mm # Gas extractor applicable up to 1300°C #### (Type: ZBAK2) - System: Electrical heating - · Maximum temperature of the gas used: 800°C or 1300°C - · Material of the gas-contacting area: SUS316, Viton - Extractor material: SUS316 or SiC - · Mounting method: Flange - Sample gas outlet: Rc1/2 - Filter: SUS316 wire mesh (40 μm) - Power supply voltage: 100 VAC, 50/60 Hz, 100 VA # Electronic gas cooler #### (Type: ZBC9) - Fixed dehumidification flow rate (Max.): 1.5 - Inlet gas temperature: 40°C or lower - Output gas dew point: 0.5°C to 3°C - Pressure: 50 kPa (Max.) - Power supply voltage: 100 VAC, 50/60 Hz · Gas outlet/inlet: Rc1/4 - Dehumidification check function: With check terminal - External dimensions: 250(H)x200(W)x167(D) mm ## Examples of Application # Infrared CH₄, CO₂ and O₂ gas analyzers optimum for bio-gas measurement. ### Infrared CO₂ and O₂ gas analyzer for storage of foodstuffs such as vegetable and fruit. Foodstuffs can be kept fresh by controlling the CO₂ and O₂ concentrations properly in a storage house. # Example of measurement of exhaust gas from a boiler or refuse incinerator (NO, SO₂, CO, CO₂, and O₂ measurement) # Code symbols | | 4 | 5 | 6 | 7 | 8 | | 9 | 10 | 11 | 12 | 13 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 21 | 22 | 23 | 24 | 25 | |-----|---|---|---|---|---|---|---|----|----|----|----|---|----|----|----|----|----|----|----|---|----|----|----|----|----| | ZRE | Α | | | | 1 | - | | | | | | _ | | | | | | | | _ | | | Υ | | | | Digit | | Desci | | Note | | Code | | |-------|---|--|--------------------------|------------------------|--------|------|---| | 4 | Standard | | | | | | Α | | 5 | <installation< td=""><td>on structure</td><td>e></td><td></td><td></td><td></td><td></td></installation<> | on structure | e> | | | | | | | 19" rack m | nount type, | Conformin | g to EIS | | | В | | | 19" rack m | nount type, | Conformin | g to JIS | | | С | | | Panel mou | | | | | | D | | 6 | | | nts (NO, SO ₂ | CO. CH ₄)> | | П | | | | 1st | 2nd | 3rd | 4th | Note 1 | | | | | None | | | | | | Υ | | | NO | | | | | | Р | | | SO ₂ | | | | | | Α | | | CO ₂ | | | | | | D | | | CO | | | | | | В | | | CH ₄ | | | | | | E | | | NO. | SO ₂ | | | | Н | F | | | NO | CO | | | | | G | | | CO ₂ | CO | | | | | J | | | CH ₄ | co | | | | | K | | | CO ₂ | CH4 | | | | | L | | | NO | SO ₂ | СО | | | Н | N | | | CO ₂ | CO | CH ₄ | | | | T | | | NO | | | 00 | | | V | | | | SO ₂ | CO ₂ | CO | | | - | | _ | Others | | (0) | | | Н | Z | | 7 | | ble compo | nent (O ₂)> | | | | | | | None | _ , | | | | | Y | | | External C | D ₂ sensor (0 | to 1 VDC |) | Note 2 | | 1 | | | | | sensor (Typ | oe ZFK7) | | | 2 | | | Built-in fue | el cell O ₂ se | ensor | | | | 3 | | | Built-in pa | ramagnetic | O ₂ sensor | • | | | 4 | | 9 | <1st comp | <1st component, 1st measurement range> | | | | | | | | See Table | See Table 1. | | | | | | | 10 | <1st comp | Note 3 | | | | | | | | See Table | | | | | | | | 11 | <2rd component, 1st measurement range> | | | | | | | | | See Table 1. | | | | | | | | 12 | <2rd component, 2nd measurement range> | | | | | | | | | See Table 1. | | | | | | | | 13 | <3rd comp | onent, 1st i | measureme | nt range> | Note 3 | | | | | See Table | 1. | | | | | | | 14 | <3rd comp | onent, 2nd | measureme | ent range> | Note 3 | | | | | See Table | 1. | | | | | | | 15 | <4th comp | onent, 1st r | measureme | nt range> | Note 3 | | | | | See Table | 1. | | | | Ш | | | 16 | <4th comp | onent, 2nd | measureme | ent range> | Note 3 | | | | | See Table | 1. | | | | | | | 17 | <measura< td=""><td>ble range (</td><td>O₂ sensor)</td><td>></td><td></td><td></td><td></td></measura<> | ble range (| O ₂ sensor) | > | | | | | | None | | | | | | Υ | | | 0 to 5/10% | 6 | | | | | Α | | | 0 to 5/25% | 6 | | | | | В | | | 0 to 10/25 | % | | | | L | С | | | 0 to 5% | | | | | | L | | | 0 to 10% | | | | | | M | | | 0 to 25% | | | | | | V | | | 0 to 50% | | | | | | Р | | | 0 to 100% |) | | | | | R | | | Others | | | | | | Z | | 18 | <gas connection="" inlet="" outlet=""></gas> | | | | | | | | | Rc1/4 | | | | | | 1 | | | NPT1/4 | | | | | | 2 | | 19 | <output s<="" td=""><td></td><td></td><td>П</td><td></td></output> | | | П | | | | | | 0 to 1 VD0 | • | | | | | Α | | | 4 to 20 m/ | A DC | | | | | В | | | 0 to 1 VDC | + RS485 cd | mmunicatio | n function | | | С | | | 4 to 20 mA | DC + RS485 | communicat | ion function | | | D | | | | | | | | | | | Digit | | Desci | ription | | Note | | Code | | |-------|--|--|---------------|-----------------|------------------|---|---------|--| | 20 | <display></display> | | | | | | J | | | | English | | | | | | E | | | | Chinese | | | | | | С | | | 21 | | ion and O₂ a | verage value | e output> | Note 4 | | | | | | None | | - | · | | | Υ | | | | With O ₂ co | orrection ou | ıtput | | | | Α | | | | | ction output, O2 | verage output | | | С | | | | 22 | | function (D | · · | | | | | | | | FAULT | Auto | Upper/lower | | | | | | | | None | calibration | limit alarm | fication/Remote | | | V | | | | | | | | | | Y
A | | | | | | | | | | В | | | | | | | | | | С | | | | 0 0 0 0 0 0 | | | | | | D | | | | 0 | 0 | 0 | | | | Е | | | | 0 | | 0 | 0 | | | F | | | | 0 | 0 | | 0 | | | G | | | | | 0 | 0 | 0 | Note 5 | | Н | | | 24 | | | | | | | | | | | ppm, % | 2 | | | Note 0 | | A | | | 05 | mg/m³, g/ı | | | | Note 6
Note 7 | _ | В | | | 25 | <adjustme< td=""><td>ent></td><td></td><td></td><td>ivote /</td><td></td><td>Α</td></adjustme<> | ent> | | | ivote / | | Α | | | | | | | | C | | | | | | | For heat treatment furnace For converter | | | | | | | | | Others | | | | | | D
Z | | | Nota | 1: Specify | codo "V" u | thon the O | concor on | v ic ro | | uirod V | | | NOLE | | code i w | | | | | | | Table 1. <Measurement range code tables | code table> | | | | | | | | |-------------------|------|--|--|--|--|--|--| | Measurement range | Code | | | | | | | | 0 to 100ppm | В | | | | | | | | 0 to 200ppm | С | | | | | | | | 0 to 250ppm | D | | | | | | | | 0 to 300ppm | S | | | | | | | | 0 to 500ppm | E | | | | | | | | 0 to 1000ppm | F | | | | | | | | 0 to 2000ppm | G | | | | | | | | 0 to 2500ppm | U | | | | | | | | 0 to 3000ppm | Т | | | | | | | | 0 to 5000ppm | Н | | | | | | | | 0 to 1% | J | | | | | | | | 0 to 2% | K | | | | | | | | 0 to 3% | Q | | | | | | | | 0 to 5% | L | | | | | | | | 0 to 10% | М | | | | | | | | 0 to 20% | N | | | | | | | | 0 to 25% | V | | | | | | | | 0 to 40% | w | | | | | | | | 0 to 50% | Р | | | | | | | | 0 to 70% | X | | | | | | | | 0 to 100% | R | | | | | | | | Others | Z | | | | | | | - When NO, SO₂ measurment is specified [Auto calibration] must be specified 22th digit. - Note 2: Feed input signals from the external O₂ sensor linearly within the range 0 to 1 VDC against the full scale. Our exclusive zirconia O₂ sensor (ZFK7) and external oxygen sensor are also optionally available. - Note 3: Select the measurable component and range from the table on pages 7. If code "Y" is selected for the 6th digit, specify "Y" for all of the digits from the 9th to 16th. - Note 4: O_2 correction output and O_2 correction average output are made for NO, SO_2 , and CO only. Note 5: Not applicable to the 5-component sensor. The number of output points for upper/lower - limit alarms is 3 for the 4-component sensor. - Note 6: Even if code "B" is specified, select the measurement range in unit of ppm. A value converted into the mg/m³ range will be delivered. Applicable only to NO, SO₂, and CO sensors. See the following table for correspondence between ppm and mg/m³. Note 7: Adjustment will be made using the following balance gas for all the codes from "A" to - "D" before delivery. Specify "Z" if adjustment with other gases is desired. Standard "A": Balance gas N_2 , "C" for heat treat furnace: Balance gas 30% $H_2/70\%$ N_2 , "D" for converter: Balance gas CO, CO2 Attach a table that lists the components contained in the gas to be measured if "Others" is If mg/m³ is selected, specify the minimum to maximum range in ppm that corresponds to your desired range expressed in mg/m³. Delivery will be made with adjustment made to satisfy the corresponding mg/m³ range. The conversion formula "ppm" unit into "mg/m3" unit. NO $(mg/m^3) = 1.34 \times NO (ppm)$ SO_2 (mg/m³) = 2.86 × SO_2 (ppm) CO (mg/m³) = 1.25 × CO (ppm) | (3) | (1-1-) | | | | | |------------|--------------|--|----------------------------|----------------------------|--| | | | Corresponding range expressed in mg/m³ | | | | | Range code | Unit: ppm | NO | SO ₂ | CO | | | С | 0 to 200ppm | 0 to 260mg/m ³ | 0 to 570mg/m ³ | 0 to 250mg/m ³ | | | D | 0 to 250ppm | 0 to 325mg/m ³ | 0 to 700mg/m ³ | 0 to 300mg/m ³ | | | S | 0 to 300ppm | 0 to 400mg/m ³ | 0 to 850mg/m ³ | 0 to 375mg/m ³ | | | E | 0 to 500ppm | 0 to 650mg/m ³ | 0 to 1400mg/m ³ | 0 to 600mg/m ³ | | | F | 0 to 1000ppm | 0 to 1300mg/m ³ | 0 to 2800mg/m ³ | 0 to 1250mg/m ³ | | | G | 0 to 2000ppm | 0 to 2600mg/m ³ | 0 to 5600mg/m ³ | 0 to 2500mg/m ³ | | | U | 0 to 2500ppm | 0 to 3300mg/m ³ | 0 to 7100mg/m ³ | 0 to 3000mg/m ³ | | | Т | 0 to 3000ppm | 0 to 4000mg/m ³ | 0 to 8500mg/m ³ | 0 to 3750mg/m ³ | | | Н | 0 to 5000ppm | 0 to 6600mg/m ³ | 0 to 14.00g/m ³ | 0 to 6250mg/m ³ | | # List of measurable components and ranges Fabrication is possible under the condition that the range ratio of the first to the second is 1 to 10 or less. For details of measuring range, refer to specifications (EDS3-133). #### 1-component analyzer | Measurable | 1st r | ange | 2nd range | | | | |-------------------|---------------|---------------|---------------|---------------|--|--| | gas
components | Minimum range | Maximum range | Minimum range | Maximum range | | | | NO | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | | | SO ₂ | 0 to 200ppm | 0 to 10% | 0 to 250ppm | 0 to 10% | | | | CO | 0 to 200ppm | 0 to 100% | 0 to 250ppm | 0 to 100% | | | | CO ₂ | 0 to 100ppm | 0 to 100% | 0 to 200ppm | 0 to 100% | | | | CH₄ | 0 to 500ppm | 0 to 100% | 0 to 1000ppm | 0 to 100% | | | ### 2-component analyzer #### NO+SO₂ | Measurable | 1st ra | ange | 2nd range | | | |-------------------|---------------|---------------|---------------|---------------|--| | gas
components | Minimum range | Maximum range | Minimum range | Maximum range | | | NO | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | | SO ₂ | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | #### NO+CO | Measurable | 1st ra | ange | 2nd r | nge | | |-------------------|---------------|---------------|---------------|---------------|--| | gas
components | Minimum range | Maximum range | Minimum range | Maximum range | | | NO | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | | СО | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | #### CO₂+CO | Measurable | 1st ra | ange | 2nd range | | | |-------------------|---------------|---------------|---------------|---------------|--| | gas
components | Minimum range | Maximum range | Minimum range | Maximum range | | | CO ₂ | 0 to 100ppm | 0 to 100% | 0 to 200ppm | 0 to 100% | | | СО | 0 to 200ppm | 0 to 100% | 0 to 250ppm | 0 to 100% | | #### CH₄+CO | Measurable | 1st r | ange | 2nd range | | | | |-------------------|---------------|---------------|---------------|---------------|--|--| | gas
components | Minimum range | Maximum range | Minimum range | Maximum range | | | | CH₄ | 0 to 500ppm | 0 to 100% | 0 to 1000ppm | 0 to 100% | | | | СО | 0 to 200ppm | 0 to 100% | 0 to 250ppm | 0 to 100% | | | ### CO₂+CH₄ | Measurable | 1st range | | 2nd range | | |-------------------|---------------|---------------|---------------|---------------| | gas
components | Minimum range | Maximum range | Minimum range | Maximum range | | CO ₂ | 0 to 100ppm | 0 to 100% | 0 to 200ppm | 0 to 100% | | CH₄ | 0 to 500ppm | 0 to 100% | 0 to 1000ppm | 0 to 100% | ### 3-component analyzer #### NO+SO₂+CO | Measurable
gas
components | 1st range | | 2nd range | | |---------------------------------|---------------|---------------|---------------|---------------| | | Minimum range | Maximum range | Minimum range | Maximum range | | NO | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | SO ₂ | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | СО | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | #### CO₂+CO+CH₄ | Measurable | 1st range | | 2nd range | | |-------------------|---------------|---------------|---------------|---------------| | gas
components | Minimum range | Maximum range | Minimum range | Maximum range | | CO ₂ | 0 to 5000ppm | 0 to 100% | 0 to 1% | 0 to 100% | | СО | 0 to 500ppm | 0 to 100% | 0 to 1000ppm | 0 to 100% | | CH₄ | 0 to 5000ppm | 0 to 100% | 0 to 1% | 0 to 100% | #### 4-component analyzer #### NO+SO₂+CO₂+CO | Measurable
gas
components | 1st range | | 2nd range | | |---------------------------------|---------------|---------------|---------------|---------------| | | Minimum range | Maximum range | Minimum range | Maximum range | | NO | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | SO ₂ | 0 to 200ppm | 0 to 5000ppm | 0 to 250ppm | 0 to 5000ppm | | CO ₂ | 0 to 1% | 0 to 50% | 0 to 2% | 0 to 50% | | CO | 0 to 200ppm | 0 to 2500ppm | 0 to 250ppm | 0 to 2500ppm | # Major specifications | | oomoano | | | |-----------------------|---|----------------------------------|------------------------------| | Measurement principle | NO, SO ₂ , CO, CO ₂ , CH ₄ : Non-dispersive infrared ray absorption (Single-beam system) | | | | | O ₂ : Fuel cell (built in) or zirconia (externally installed ZFI by Fuji) or Paramagnetic (built in) | | | | | | | Maximum range | | component and | NO | 0-200ppm | 0-5000ppm | | range | SO ₂ | 0-200ppm | 0-10 vol% | | | CO ₂ | 0-100ppm | 0-100 vol% | | | СО | 0-200ppm | 0-100 vol% | | | CH4 | 0-500ppm | 0-100 vol% | | | O ₂ | 0-10 vol% | 0-25 vol% | | | Fuel cell (built in) | | | | | O ₂ Zirconia | 0-5 vol% | 0-25 vol% | | | Paramagnetic O2 sensor | | | | | Switching between 2 ranges allowed for each component. Maximum range ratio: 1:10 (excluding O ₂) | | | | Repeatability | ±0.5% FS | | | | Linearity | ±1.0% FS | | | | Zero drift | Within ±2%FS/week | | | | Span drift | Within ±2%FS/week | | | | Response time | | response from gas | | | | Varies depending on the components to be measured and | | | | | the measurement range. | | | | Analog | | 1 VDC (12 points at a | max.) | | output signal | Instantaneous value output (Concentration of each gas component measured) | | | | | Option: O ₂ correction instantaneous value output, | | | | | | ge output, O2 averag | | | Display | | | ninese by designation) | | | 1 | e of each componen | t, O ₂ correction | | | instantaneous value. O² correction average, O² average, parameter setting, with | | | | | auto OFF function | ge, O ² average, para | imeter setting, with | | Range switching | Manual switching by key operation, auto switching, external contact input switching (option) | | | | External digital | Voltage contact (supply 12 to 24 VDC/15 mA max. at ON) | | | | input (option) | 9 points at max. | | | | | J 0 | uto calibration start, | output signal hold, | | | average value rese | t | | | Contact output function (option) | 1c relay contact (15 points at max.) Identification of each component range, instrument failure, calibration error, auto calibration in progress, upper/ lower limit alarm for each component, solenoid valve drive for auto calibration | |-------------------------------------|--| | Communication function (option) | RS-485 (MODBUS protocol) Details of communication: Read/write of each setting, output of measured concentration and instrument status Type-B with USB connector (front face) and USB driver | | Sample gas flowmeter | Built in | | Gas outlet/inlet dimension | Rc1/4 or NPT1/4 | | Purge gas flow rate | 1 L/min (Performed as required.) | | Structure | Indoor type with steel case | | Ambient
temperature/
humidity | -5°C to 45°C, 90 RH or lower (No condensation allowed.) | | Mounting method | 19" rack mount, panel mount, desktop | | Power supply voltage | 100 to 240 VAC, 50/60 Hz, 100VA | | Outside dimension | 133×483×418 mm (19" rack mount)
133×440×418 mm (Panel mount) | | Mass | Approximately 8 kg (5-component analyzer) | | Applicable standard | CE mark | #### <Measured gas conditions> | Flow rate | 0.5L/min±0.2L/min | | |-------------|--|--| | Temperature | 0°C to 50°C | | | Pressure | 10 kPa or lower | | | Dust | 100 μg/Nm3 or lower (Particle size: 0.3 μm or smaller) | | | Mist | Not allowed. | | | Moisture | Saturation at room temperature or lower | | | | (No condensation allowed.) | | | | Saturation at 2°C or lower (No condensation allowed.) | | | Corrosive | HCI: 1 ppm or less | | | component | | | # • Outline diagram (Unit: mm) # Fuji Electric Your distributor: **Coulton Instrumentation Ltd** 17 Somerford Business Park, Christchurch, BH23 3RU, UK Tel: +44 1202 480 303 E-mail: sales@coulton.com Web: www.coulton.com