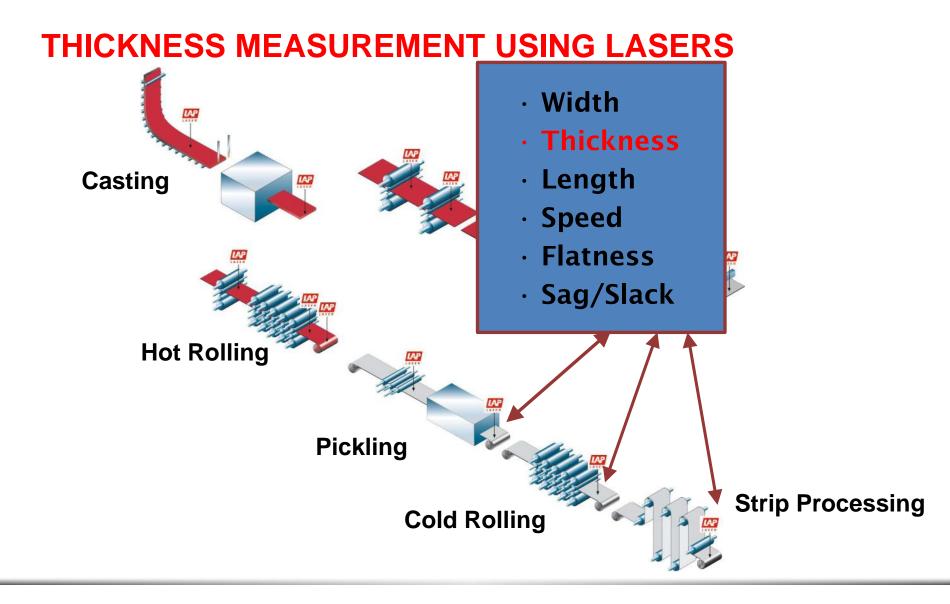


LASUREMENT

CALIX S & XL Innovative Design of Laser Based Thickness Gauges

LAP CALIX


CALIX XL

Optical Thickness Measurement for:

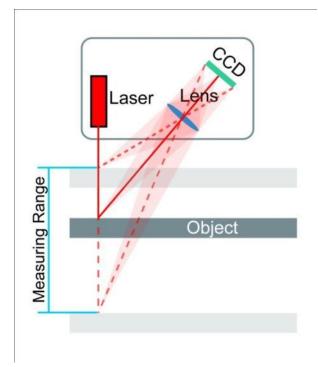
- Pickling Lines
- Cold Mills
- Annealing Lines
- Temper/Skinpass Mills
- Galvanizing and Tinning Lines
- Organic Coating Lines
- Inspection Lines
- Slitters

CALIX S

Optical Thickness Measurement for:

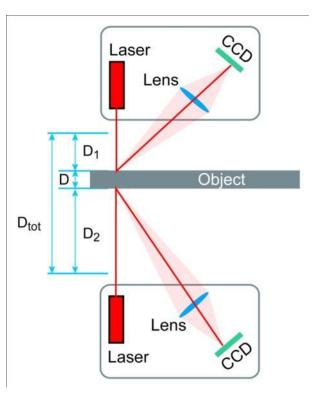
- Calander (rubber / tire)
- Pasting (battery)
- Inspection Lines
- Slitting Lines (strip)
- Feeding (tube welding)

Benefits:


- Precise results
- High-resolution thickness profiles over the entire length of the strip
- Fast thickness control
- Detection of short-time events
 - Roll eccentricity
 - Welding joints

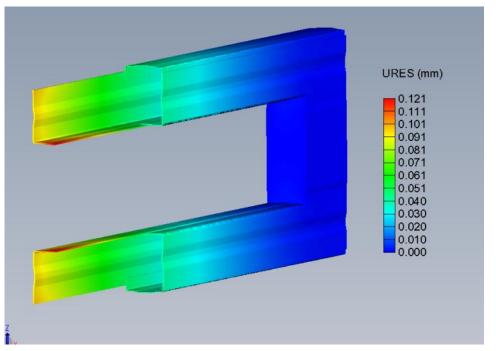
OPERATIONAL PRINCIPLE

- Laser Triangulation
- Uses only light
 - Laser shines spot on surface
 - CCD line camera "sees" the spot
 - at an angle
 - Digital Signal Processor collects
 - signal
 - Distance is calculated



OPERATIONAL PRINCIPLE

Thickness Measurement using top and bottom sensor


- Using differential measurement
 - Distance to top
 - Distance to bottom
 - Both distances calculated
 - $D = D_{tot} D_1 D_2$
 - \rightarrow Distance of the sensors D_{tot}
 - must be constant!

MECHANICAL STABILITY

- Material
 - With very low impact by temperature changes
- Construction
 - Very rigid
 - No internal stresses
 - Can withstand processing line environments
 - Protection from dirt, steam, etc.
 - Result
 - D_{tot} = constant

CALIX S & XL SYSTEM

Basic System consists of:

- Sensors and smart processors in a rugged C-frame
- Cables
- Software Packages for use in PC

EVERYDAY OPERATION

- Absolute Measurement
 - No alloy compensation needed
 - No influence of surface properties
- Factory Calibrated
 - At constant ambient temperature field calibration usually not necessary (∆T < 5°C)</p>
 - But if so, takes only a few seconds
 - Best Calibration using rotating disk
- Safety
 - Class 2 Lasers (1 mW)
 - No NRC requirements
 - No X-ray or Gamma radiation
 - No high voltage electronics

CALIX S & XL INSTALLATION

INSTALLATION OF CALIX XL

- Throat depth up to 1,300 mm
 - Material width over 2,000 mm
- Air gap up to 200 mm
 - Wavy material can be measured
- Thickness range up to 30 mm
 - Insensitive to passline fluctuation
- Width of C-frame 300 mm
 - Can easily replace old gauges with little mill or line modification
- Electronic Integration
 - 2 cables; signal and power
 - No electronic cabinet necessary for basic system

INSTALLATION OF CALIX S

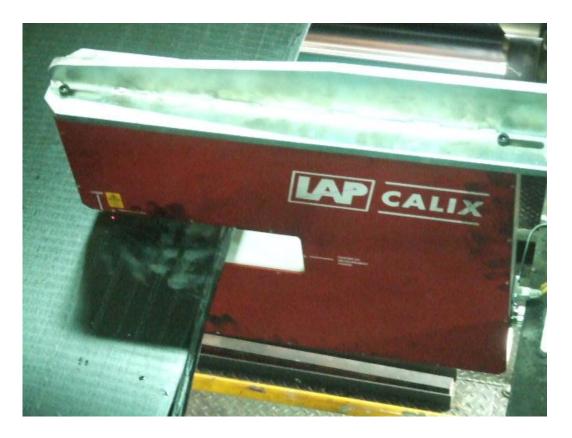
- Throat depth up to 300 mm
 - Material width over 400 mm
- Air gap up to 200 mm
 - Wavy material can be measured
- Thickness range up to 30 mm
 - Insensitive to passline fluctuation
- Width of C-frame 164 mm
 - Can easily replace old gauges with little mill or line modification
- Electronic Integration
 - 2 cables; signal and power
 - No electronic cabinet necessary for basic system

CALIX S & XL R&D PROJECT

Together with ThyssenKrupp

- Commissioned at German site in 2009
- Results confirmed
- Eight systems ordered for their Alabama galvanizing lines
- Production starts at the first quarter of 2011

CALIX S & XL PRINCIPLE

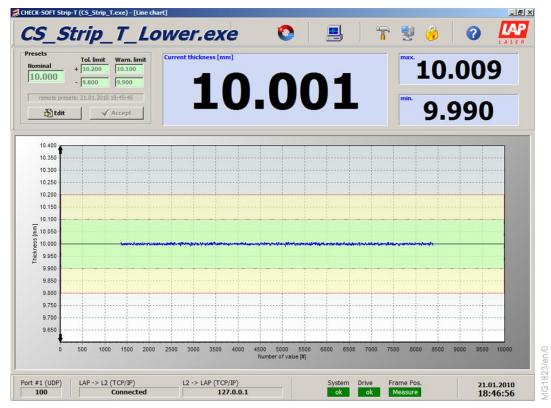


CALIX S & XL INSTALLATION STRIP PROCESSING

CALIX S & XL INSTALLATION CALENDER

CALIX CERTIFIED CALIBRATION DEVICE

MG3356/en/0


Semi-automatic calibration unit

Single track static sensor

AP Checksoft-TW 😽 🖁	š 🖾 📈 🜌	🎸 🖳 🗹	X 🖸 í		2									1		
		Presets										_				
System is online Me	asurment is running	FE MEASURE		Curron	t Prese	•	1838-	EP-158	27	Nov	t Preset	. —	1838-6	P-1571		
				curren	C FTC3C		1050	2, 150		140.4		· (1050 1	. 15/1		
															_	
Product/Coil-Data		Cross profiles									Strips					
Coil-Number 1838-EP-1581					>> <<							>>				
Steelgrade	S355MC				_											
Commission	0,0	Overview Lines														
	4/16/2012 4:44:40					1.00										
Length (m)	253.083	Strip(mm)/CP(m))	ALL (mi	6.1	2.00 6.1				10.00 6.1	20.00 6.2	6.2	40.00 6.1	50.00 6.1	60.00 6.2	a	
State	Bad	W-AllS 1	1534.1	5.639	5.643		1529.1 - 5.338 5		1532.9 5.525	5.477	1531.3 5.413	1529.7 5.236	1529.7 5.226	1531.5 5.421	1	
No. of cross profiles	33	S 2	5.846	5.980	5.945			5.910	5.898	5.960	5.946	5.897	5.889	5.910		
lo. of strips	34	S 3 S 4	5.859 5.869	5.998 6.010	5.922 5.928	5.923			5.910 5.912	5.986 6.017	5.949 5.949	5.906 5.918	5.899 5.911	5.921 5.931		
Geam	4 Yes	S 5	6.114	6.018	5.940	5.954	5.955	5.924	5.935	6.041	5.958	5.938	5.935	5.946		
Presets		S 6 S 7	6.117 6.129	6.024	5.956	5.973			5.944 5.968	6.055 6.060	5.975 6.016	5.945 5.964	5.956	5.963 6.021		
	Vidth	S 8	6.154	6.050	5.971		6.029 5		5.974	6.080	6.030	6.025	6.026	6.046		
Nominal 6	1516	S 9 S 10	6.173 6.187	6.062	5.990 6.024		6.040 6 6.048 6		6.031 6.056	6.097 6.112	6.046 6.075	6.049 6.066	6.027	6.062		
Dtg/Utg 0.5 0.5	0.2 0.2	S 11	6.207	6.072	6.025				6.068	6.117	6.093	6.076	6.076	6.085		
Owg/Uwg 0.2 0.2	0.1 0.1	S 12 S 13	6.220 6.227	6.072	6.078 6.084	6.058 6.061		5.069 5.068	6.083 6.088	6.125 6.130	6.108 6.118	6.084 6.091	6.100 6.101	6.088 6.101		
		S 14 S 15	6.242 6.240		6.079 6.129				6.098 6.105	6.141 6.156	6.133 6.144	6.112 6.115	6.102	6.143 6.149		
Profile statistic (all) curre	ent strip x	S 16	6.245		6.104	6.082			6.117	6.154	6.156	6.107	6.106	6.160		
Width Thick. ((all) Strip1	S 17 S 18	6.268 6.274		6.109 6.108				6.114 6.118	6.149 6.156	6.155	6.096 6.094	6.106 6.110	6.157		
Min. 1525.333	5.863 5.194	S 19	6.265		6.110	6.089	6.095 6	5.078	6.112	6.156	6.156	6.098	6.111	6.153		
Max. 1534.118	6.274 6.085	S 20 S 21	6.263 6.253		6.111 6.106				6.101 6.101	6.160 6.156	6.155	6.108	6.114 6.112	6.152		
Average. 1530.856	6.070 5.906	S 22	6.235	6.101	6.103				6.093	6.160	6.139	6.122	6.113	6.127		
Errors 67	0 32	S 23. S 24.	6.232	6.097 6.090	6.078 6.076	6.075			6.090 6.079	6.162 6.157	6.124 6.112	6.104 6.089	6.113 6.065	6.113 6.108		
		S 25 S 26	6.216 6.204	6.090 6.074	6.070 6.066				6.062	6.138	6.108 6.088	6.083 6.074	6.062	6.108		
Raster profile 1 Start = 0.00		S 27	6.195	6.079	6.056	6.038	6.057 6	5.042	6.060 6.057	6.129 6.128	6.079	6.067	6.068	6.105 6.102		
	(all) Strip1	S 28 S 29	6.175 6.170	6.062 6.045	6.048 6.034	6.030 6.013				6.123 6.112	6.070 6.060	6.052 6.057	6.068 6.052	6.089 6.061		
	5.99 5.64	S 30	6.157	6.021	6.019	5.973	5.972 5	5.975	5.948	6.096	6.043	5.921	6.032	6.044		
Max. 0.00	6.10 5.98	S 31 S 32	6.179 6.176	5.988 5.983	5.994 5.973				5.929 5.919	6.080 6.071	6.026	6.034	6.020	6.030		
Average 0.00	6.05 5.94	S 33	6.186	5 969	5 960	5.950				5.980						

- 1. Headline
- 2. Menu
- 3. Measurement rate
- 4. Presets / Actual status
- 5. Cross profile navigator
- 6. Line graph
- 7. System status
- 8. Actual measurement
- 9. Presets (numerical values)
- 10. Status display: Active/online Not active/offline

SUMMARY

Alternative to conventional thickness gauges

- Accurate
 - By maintaining constant distances between the sensors
 - +/- 4,5 μm accuracy S-type
 - +/- 2 μm accuracy XL-type
 - +/- 0.4 μm (2 σ) repeatability
- Accuracy:
 - Same accuracy on any thickness
 - Absolute accuracy and no relative
- Material independent
 - By absolute measurement to the surfaces
- Fast
 - 4 kHz sampling rate
- Maintenance
 - Virtually maintenance free

ADVANTAGES VS. CONTACT, ISOTOPE, AND X-RAY GAUGES

Laser Safety:

Our Class 2 lasers do not pose any type of safety risk or concern. Isotope and x-ray gauges are governed by various NRC, OSHA, federal and state regulations because of safety issues.

- Safe
 - no high voltages
- Maintenance:

The CALIX involves very little hardware as opposed to isotope and x-ray gauges. Less hardware equals less maintenance. Also, since the CALIX is non-contact, the frequent calibration and upkeep of contact gauges is not necessary.

Component Failure:

The hardware makeup of the CALIX is minimal and simple. Less hardware equals less components to fail. Most x-ray sources only last a few years.

ADVANTAGES VS. CONTACT, ISOTOPE, AND X-RAY GAUGES

Alloy Composition:

Since we measure to the surfaces, alloy composition and variation is not applicable to the CALIX.

Coatings:

For the reason stated above, this is not an issue for the CALIX.

Non-contact:

No marking of the strip, no damage from bad shape, no frequent calibration needs.

Noise:

The CALIX exhibits essentially a "noiseless" signal as opposed to isotope and x-ray gauges.

No cost for disposal of nuclear waste as for ISOTOPIC gauges

ADVANTAGES VS. CONTACT, ISOTOPE, AND X-RAY GAUGES

Low Voltage:

There are no high voltage components in the CALIX. The base system runs on 24 VDC.

- Price: In general, the CALIX costs much less than contact, isotope, and x-ray gauges.
- For all of these reasons, the CALIX is the thickness gauge of choice in many applications!

Thank you very much for your attention!

